Deoxyribozymes that recode sequence information
نویسندگان
چکیده
Allosteric nucleic acid ligases have been used previously to transform analyte-binding into the formation of oligonucleotide templates that can be amplified and detected. We have engineered binary deoxyribozyme ligases whose two components are brought together by bridging oligonucleotide effectors. The engineered ligases can 'read' one sequence and then 'write' (by ligation) a separate, distinct sequence, which can in turn be uniquely amplified. The binary deoxyribozymes show great specificity, can discriminate against a small number of mutations in the effector, and can read and recode DNA information with high fidelity even in the presence of excess obscuring genomic DNA. In addition, the binary deoxyribozymes can read non-natural nucleotides and write natural sequence information. The binary deoxyribozyme ligases could potentially be used in a variety of applications, including the detection of single nucleotide polymorphisms in genomic DNA or the identification of short nucleic acids such as microRNAs.
منابع مشابه
Recode-2: new design, new search tools, and many more genes
'Recoding' is a term used to describe non-standard read-out of the genetic code, and encompasses such phenomena as programmed ribosomal frameshifting, stop codon readthrough, selenocysteine insertion and translational bypassing. Although only a small proportion of genes utilize recoding in protein synthesis, accurate annotation of 'recoded' genes lags far behind annotation of 'standard' genes. ...
متن کاملGeneral deoxyribozyme-catalyzed synthesis of native 3'-5' RNA linkages.
An elusive goal for nucleic acid enzymology has been deoxyribozymes that ligate RNA rapidly, sequence-generally, with formation of native 3'-5' linkages, and in preparatively useful yield. Using in vitro selection, we have identified Mg2+- and Zn2+-dependent deoxyribozymes that simultaneously fulfill all four of these criteria. The new deoxyribozymes operate under practical incubation condition...
متن کاملDNA-Catalyzed Introduction of Azide at Tyrosine for Peptide Modification
We show that DNA enzymes (deoxyribozymes) can introduce azide functional groups at tyrosine residues in peptide substrates. Using in vitro selection, we identified deoxyribozymes that transfer the 2'-azido-2'-deoxyadenosine 5'-monophosphoryl group (2'-Az-dAMP) from the analogous 5'-triphosphate (2'-Az-dATP) onto the tyrosine hydroxyl group of a peptide, which is either tethered to a DNA anchor ...
متن کاملIn vitro selection, characterization, and application of deoxyribozymes that cleave RNA
Over the last decade, many catalytically active DNA molecules (deoxyribozymes; DNA enzymes) have been identified by in vitro selection from random-sequence DNA pools. This article focuses on deoxyribozymes that cleave RNA substrates. The first DNA enzyme was reported in 1994 and cleaves an RNA linkage. Since that time, many other RNA-cleaving deoxyribozymes have been identified. Most but not al...
متن کاملIn vitro selection of small RNA-cleaving deoxyribozymes that cleave pyrimidine–pyrimidine junctions
Herein, we sought new or improved endoribonucleases based on catalytic DNA molecules known as deoxyribozymes. The current repertoire of RNA-cleaving deoxyribozymes can cleave nearly all of the 16 possible dinucleotide junctions with rates of at least 0.1/min, with the exception of pyrimidine-pyrimidine (pyr-pyr) junctions, which are cleaved 1-3 orders of magnitude slower. We conducted four sepa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nucleic Acids Research
دوره 34 شماره
صفحات -
تاریخ انتشار 2006